HAS University of Applied science

Chemistry - deficiency for HBM

Trial exam exercises 2022

- For a pass, you need 10 or more (out of 18) correct answers.
- The correct answers are on the final page, including short explanations.
- The use of a calculator is allowed. Two tables are annexed:
 - o Periodic Table of the Elements, Appendix 1
 - o Redox table, Appendix 2.
- **1.** A fertilizer consists for 80% of its weight of (NH₄)₂SO₄. What is the N-percentage (weight) of this fertilizer?
 - a. 8,5% (or 0,085)
 - b. 10% (or 0,10)
 - c. 17% (or 0,17)
 - d. 21% (or 0,21)
- 2. Balance the following equation:

$$CH_3COOH + O_2 \rightarrow CO_2 + H_2O$$

- a. $CH_3COOH + O_2 \rightarrow C_2O_2 + 2 H_2O$
- b. $CH_3COOH + O_2 \rightarrow 2 CO_2 + 2 H_2O$
- c. $CH_3COOH + 2 O_2 \rightarrow 2 CO_2 + H_2O$
- d. $CH_3COOH + 2 O_2 \rightarrow 2 CO_2 + 2 H_2O$
- 3. What is the number of electrons and the number of protons in a Ca²⁺ -ion?
 - a. 18 electrons, 20 protons and 20 neutrons
 - b. 18 electrons, 20 protons and 40 neutrons
 - c. 20 electrons, 20 protons and 20 neutrons
 - d. 20 electrons, 40 protons and 20 neutrons

- **4.** What is the number of electrons and the number of protons in ⁶²₂₈ Ni?
 - a. 28 electrons, 28 protons and 34 neutrons
 - b. 28 electrons, 28 protons and 62 neutrons
 - c. 28 electrons, 34 protons and 28 neutrons
 - d. 34 electrons, 28 protons and 62 neutrons
- **5.** What is the official chemical name of $(NH_4)_2SO_4$?
 - a. ammonium sulphate
 - b. ammonium sulphide
 - c. diammonium sulphate
 - d. sulfuric acid
- **6.** Which of the following compounds are all soluble in water?
 - a. C₂H₄, H₂SO₄, NaOH
 - b. C_2H_5OH , H_2O_2 , C_6H_6
 - c. CH_4 , KOH, $C_{12}H_{22}O_{11}$
 - d. NH_3 , $C_6H_{12}O_6$, CH_3COOH
- **7.** What is the correct (balanced) equation for the formation of a precipitate of barium carbonate?
 - a. Ba (aq) + CO₃ (aq) \rightarrow BaCO₃ (s) b. Ba²⁺ (aq) + CO₃⁻ (aq) \rightarrow Ba₂CO₃ (s)

 - c. $Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3(s)$
 - d. $Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow Ba^{2+}CO_3^{2-}(s)$
- 8. What is the amount of barium carbonate (mmol) that is formed if
 - 60 mL 0,23 M Ba(CH₃COO)₂ solution is added to
 - 40 mL 0,25 M Na₂CO₃ solution?
 - a. 3,8 mmol
 - b. 10 mmol
 - c. 14 mmol
 - d. 24 mmol
- **9.** How much mmol equals 15 g of barium carbonate?
 - a. 13 mmol
 - b. 76 mmol
 - c. 91 mmol
 - d. 197 mmol

- 10. Calculate the pH of a solution of 0,15 M HCl.
 - a. pH = 0.15
 - b. pH = 0.74
 - c. pH = 0.82
 - d. pH = 3.82
- 11. Calculate the pH of a solution of 5,00 g/L Ba(OH)₂.
 - a. pH = 1,23
 - b. pH = 12,5
 - c. pH = 12.8
 - d. pH = 14,7
- **12.** What is the correct equation for the redox reaction between Au³⁺ and Ag (see Appendix 2)?
 - a. $Au^{3+} + Ag \rightarrow Au + Ag^{+}$
 - b. $Au^{3+} + 3 Ag \rightarrow Au + 3 Ag^{+}$
 - c. $Au^{3+} + 2e^{-} + Ag \rightarrow Au + Ag^{+}$
 - d. no reaction
- **13.** What is the correct equation for the redox reaction between Br₂ and Au (see Appendix 2)?
 - a. $Br_2 + Au \rightarrow 2 Br + Au^{3+}$
 - b. $Br_2 + Au \rightarrow 2 Br^2 + Au^{3+} + e^2$
 - c. $3 Br_2 + 2 Au \rightarrow 6 Br + 2 Au^{3+}$
 - d. no reaction
- **14.** What is the correct equation for the redox reaction between MnO_4^- and H_2SO_3 in acidic conditions (see Appendix 2)?
 - a. $MnO_4^- + H_2O + H_2SO_3 \rightarrow 2 MnO_4^{2-} + SO_4^{2-} + 4 H^+$
 - b. $MnO_4^- + H_2SO_3 \rightarrow MnO_2 + 2 H_2O$
 - c. $2 MnO_4^- + 5 H_2SO_3 \rightarrow 2 Mn^{2+} + 5 SO_4^{2-} + 4 H^+ + 3 H_2O_4^-$
 - d. no reaction

- **15.** For the titration of 25,00 mL sulfuric acid (H_2SO_4 solution) 23,86 mL 0,1005 M NaOH solution is needed. Calculate the concentration of sulfuric acid in mole per liter.
 - a. 0,01187 M
 - b. 0,04796 M
 - c. 0,09592 M
 - d. 0,1918 M
- **16.** What is the correct structural formula of 2-methylpent-2-ene?

a.

17. What is the correct structural formula of 3,5-diethyloctane?

c.

d.

18. What is the correct structural formula of 2-hydroxypropanoic acid?

The correct answers are:

 H_3C

1 c. 17% (or 0,17)

2 d. $CH_3COOH + 2 O_2 \rightarrow 2 CO_2 + 2 H_2O$

3 a. 18 electrons, 20 protons and 20 neutrons

4 a. 28 electrons, 28 protons and 34 neutrons

5 a. ammonium sulphate

7 c.
$$Ba^{2+}(aq) + CO_3^{2-}(aq) \rightarrow BaCO_3(s)$$

- 8 b. 10 mmol
- 9 b. 76 mmol
- 10 c. pH = 0,82
- 11 c. pH = 12,8

12 b.
$$Au^{3+} + 3 Ag \rightarrow Au + 3 Ag^{+}$$

13 d. no reaction

14 c.
$$2 MnO_4^- + 5 H_2SO_3 \rightarrow 2 Mn^{2+} + 5 SO_4^{2-} + 4 H^+ + 3 H_2O_4^{2-}$$

- 15 b. 0,04796 M
- 16 a
- 17 b
- 18 a

Explanations

Question 1

%
$$N = \frac{MW N}{MW (NH4)2SO4} \times 100\%$$

Molecular weight of (NH₄)₂SO₄ is (see Periodic Table of the Elements, appendix 1):

$$2 \times N = 2 \times 14,0 = 28,0$$

$$8 \times H = 8 \times 1,0 = 8,0$$

$$1 \times S = 1 \times 32, 1 = 32, 1$$

$$4 \times 0 = 4 \times 16,0 = 64,0 + 132,1 \text{ g/mol}$$

% $N = \frac{2 \times 14.0}{132.1} \times 100\% = 21.2\%$ if 100% of the fertilizer consists of $(NH_4)_2SO_4$. Only 80% of the weight of the fertilizer is $(NH_4)_2SO_4$.

%
$$N = \frac{21,2\%}{100} \times 80 = 16,96\%$$
 (Significance is 2) % $N = 17\%$

Question 2

The law of conservation of mass dictates that the quantity of each element does not change in a chemical reaction. Thus, each side of the chemical equation must represent the same quantity of any particular element.

```
CH₃COOH +
                         O<sub>2</sub> →
                                 CO<sub>2</sub> +
       C: 2
                                  C: 1
       H: 4
                                  H: 2
       0: 2 + 2 = 4
                          0: 2 + 1 = 3
       First multiply CO<sub>2</sub> by 2 to gain 2 C:
       CH₃COOH +
                         O_2 \rightarrow 2 CO_2 + H_2O
       C: 2
                                  C: 2
       H: 4
                                  H: 2
       0: 2 + 2 = 4
                          0: 4 + 1 = 5
       Then multiply H<sub>2</sub>O by 2 to gain 4 H:
       CH_3COOH + O_2 \rightarrow 2 CO_2 + 2 H_2O
       C: 2
                                  C: 2
       H: 4
                                  H: 4
       0: 2 + 2 = 4
                          0: 4 + 2 = 6
       Then finally multiply O_2 by 2 to gain 6 O:
       CH_3COOH + 2 O_2 \rightarrow 2 CO_2 + 2 H_2O
       C: 2
                                  C: 2
       H: 4
                                  H: 4
0: 2 + 4 = 6
                  0: 4 + 2 = 6
```

Question 3

20 protons (= atomic number, see Periodic Table of the Elements, appendix 1) In an uncharged atom the amount of electrons equals the amount of protons. In this case the net charge is +2, so 2 electrons are missing.

20 - 2 = 18 electrons

40 (atomic mass) - 20 (number of protons) = 20 neutrons

Question 4

28 protons, 62 - 28 = 34 neutrons, no net charge so 28 electrons.

Question 5

 $(NH_4)_2SO_4$ is a salt.

The official chemical name of a salt starts with the name of the cation (ammonium) followed by the name of the anion (sulphate): Ammonium sulphate.

Question 6

 NH_3 : soluble in water because of the presence of N-H, formation of H-bonds; $C_6H_{12}O_6$, CH_3COOH , $C_{12}H_{22}O_{11}$, C_2H_5OH , H_2O_2 , H_2SO_4 , NaOH: soluble in water

because of the presence of O-H, formation of H-bonds CH_4 , C_2H_4 , C_6H_6 : insoluble in water because it is nonpolar.

Question 7

The salt barium carbonate consists of a Ba^{2+} -ion and a CO_3^{2-} -ion. The molecule barium carbonate has no net charge, so the molecular formula of barium carbonate is $BaCO_3$ (s). The law of conservation of mass dictates that the quantity of each element does not change in a chemical reaction.

Question 8

```
There is 60 mL x 0,23 mol/L = 13,8 mmol Ba^{2+}
There is 40 mL x 0,25 mol/L = 10 mmol CO_3^{2-}
The amount of CO_3^{2-} is limiting, so the mixture will yield 10 mmol BaCO_3 (s). (significance of 2)
```

Question 9

```
Molecular weight of BaCO<sub>3</sub> is (see Periodic Table of the Elements, appendix 1): 1 \times Ba = 1 \times 137, 3 = 137, 3 1 \times C = 1 \times 12, 0 = 12, 0 3 \times O = 3 \times 16, 0 = 48, 0 + 197, 3 \text{ g/mol}
15 \text{ g } BaCO_3 = \frac{15}{197,3} = 0,0760 \text{ mol} = 76 \text{ mmol} \text{ (significance of 2)}
```

Question 10

```
HCl is a strong acid: HCl (g) \rightarrow H^+(aq) + Cl^-(aq)

[H^+] = 0.15 \text{ mol/liter}

pH = -log [H^+], pH = -log (0.15) = 0.82
```

Question 11

```
Molecular weight of Ba(OH)<sub>2</sub> is (see Periodic Table of the Elements, appendix 1): 1 \times Ba = 1 \times 137, 3 = 137, 3 2 \times H = 2 \times 1, 0 = 2, 0 2 \times O = 2 \times 16, 0 = 32, 0 + 171, 3 \text{ g/mol}

5,00 \text{ g Ba}(OH)_2 = \frac{5,00}{171,3} = 0,0292 \text{ mol Ba}(OH)_2
Ba(OH)_2 \text{ (s) } \rightarrow Ba^{2+} \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)}
0,029 \text{ mol Ba}(OH)_2 \text{ yields } 2 \times 0,0292 = 0,0584 \text{ mol OH}^-
POH = -log [OH^-], POH = -log (0,0584) = 1,23 POH = 14-POH; POH = 14-1,23 = 12,77 POH = 12,8 \text{ (significance is 3)}
```

Question 12

 Au^{3+} is a stronger oxidator than Ag^+ , so a redox reaction is possible.

$$Au^{3+} + 3 e^{-} \rightarrow Au$$
 (1 x) half reaction 1
 $Ag \longrightarrow Ag^{+} + e^{-} (3 x)$ half reaction 2
 $Au^{3+} + 3 Ag \rightarrow Au + 3 Ag^{+}$ total redox reaction

Question 13

 Au^{3+} is a stronger oxidator than Br_2 . No reaction.

Question 14

$$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$$
 (2 x) half reaction 1
 $H_2SO_3 + H_2O$ $\rightarrow SO_4^{2-} + 4 H^+ + 2 e^-$ (5 x) half reaction 2
 $2 MnO_4^- + 5 H_2SO_3 \rightarrow 2 Mn^{2+} + 5 SO_4^{2-} + 4 H^+ + 3 H_2O$ total redox reaction

Question 15

23,86 mL \times 0,1005 mol/L = 2,398 mmol NaOH is needed. That means also 2,398 mmol OH $^{-}$.

This reacts with 2,398 x 0,5 = 1,199 mmol H_2SO_4 . (1 mol H_2SO_4 reacts with 2 mol H^+) 1,199 mmol / 25,00 mL = 0,04796 mmol/mL = 0,04796 mol/L